The climatology, propagation and excitation of ultra-fast Kelvin waves as observed by meteor radar, Aura MLS, TRMM and in the Kyushu-GCM

Author:

Davis R. N.,Chen Y.-W.,Miyahara S.,Mitchell N. J.

Abstract

Abstract. Wind measurements from a meteor radar on Ascension Island (8° S, 14° W) and simultaneous temperature measurements from the Aura MLS instrument are used to characterise ultra-fast Kelvin waves (UFKW) of zonal wavenumber 1 (E1) in the mesosphere and lower thermosphere (MLT) in the years 2005–2010. These observations are compared with some predictions of the Kyushu-general circulation model. Good agreement is found between observations of the UFKW in the winds and temperatures, and also with the properties of the waves in the Kyushu-GCM. UFKW are found at periods between 2.5–4.5 days with amplitudes of up to 40 m s−1 in the zonal winds and 6 K in the temperatures. The average vertical wavelength is found to be 44 km. Amplitudes vary with latitude in a Gaussian manner with the maxima centred over the equator. Dissipation of the waves results in monthly-mean eastward accelerations of 0.2–0.9 m s−1 day−1 at heights around 95 km, with 5-day mean peak values of 4 m s−1 day−1. Largest wave amplitudes and variances are observed over Indonesia and central Africa and may be a result of very strong moist convective heating over those regions. Rainfall data from TRMM are used as a proxy for latent-heat release in an investigation of the excitation of these waves. No strong correlation is found between the occurrence of large-amplitude mesospheric UFKW events and either the magnitude of the equatorial rainfall or the amplitudes of E1 signatures in the rainfall time series, indicating that either other sources or the propagation environment are more important in determining the amplitude of UFKW in the MLT. A strong semiannual variation in wave amplitudes is observed. Intraseasonal oscillations (ISOs) with periods 25–60 days are evident in the zonal background winds, zonal-mean temperature, UFKW amplitudes, UFKW accelerations and the rainfall rate. This suggests that UFKW play a role in carrying the signature of tropospheric ISOs to the MLT region.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference40 articles.

1. Canziani, P. O., Holton, J. R., Fishbein, E., Froidevaux, L., and Waters, J. W.: Equatorial Kelvin waves – a UARS MLS view, J. Atmos. Sci., 51, 3053–3076, https://doi.org/10.1175/1520-0469(1994)0512.0.CO;2, 1994.

2. Chang, L. C., Palo, S. E., Liu, H. L., Fang, T. W., and Lin, C. S.: Response of the thermosphere and ionosphere to an ultra fast Kelvin wave, J. Geophys. Res.-Space, 115, A00G04, https://doi.org/10.1029/2010JA015453, 2010.

3. Chen, Y.-W. and Miyahara, S.: Analysis of fast and ultra-fast Kelvin waves simulated by the Kyushu-GCM, J. Atmos. Sol.-Terr. Phy., submitted, 2011.

4. Dunkerton, T. J.: Role of the Kelvin wave in the westerly phase of the semiannual zonal wind oscillation, J. Atmos. Sci., 36, 32–41, https://doi.org/10.1175/1520-0469(1979)0362.0.CO;2, 1979.

5. Dunkerton, T. J.: The role of gravity waves in the quasi-biennial oscillation, J. Geophys. Res.-Atmos., 102, 26053–26076, https://doi.org/10.1029/96JD02999, 1997.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3