Chemistry Contribution to Stratospheric Ozone Depletion After the Unprecedented Water‐Rich Hunga Tonga Eruption

Author:

Zhang Jun1ORCID,Kinnison Douglas1ORCID,Zhu Yunqian23,Wang Xinyue4ORCID,Tilmes Simone1ORCID,Dube Kimberlee5ORCID,Randel William1ORCID

Affiliation:

1. Atmospheric Chemistry Observations & Modeling Laboratory National Center for Atmospheric Research Boulder CO USA

2. Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder Boulder CO USA

3. Chemical Sciences Laboratory National Oceanic and Atmospheric Administration Boulder CO USA

4. Department of Atmospheric and Oceanic Sciences University of Colorado Boulder Boulder CO USA

5. Institute of Space and Atmospheric Studies, University of Saskatchewan Saskatoon SK Canada

Abstract

AbstractFollowing the Hunga Tonga–Hunga Ha'apai (HTHH) eruption in January 2022, stratospheric ozone depletion was observed at Southern Hemisphere mid‐latitudes and over Antarctica during the 2022 austral wintertime and springtime, respectively. The eruption injected sulfur dioxide and unprecedented amounts of water vapor into the stratosphere. This work examines the chemistry contribution of the volcanic materials to ozone depletion using chemistry‐climate model simulations with nudged meteorology. Simulated 2022 ozone and nitrogen oxide (NOx = NO + NO2) anomalies show good agreement with satellite observations. We find that chemistry yields up to 4% ozone destruction at mid‐latitudes near ∼70 hPa in August and up to 20% ozone destruction over Antarctica near ∼80 hPa in October. Most of the ozone depletion is attributed to internal variability and dynamical changes forced by the eruption. Both the modeling and observations show a significant NOx reduction associated with the HTHH aerosol plume, indicating enhanced dinitrogen pentoxide hydrolysis on sulfate aerosol.

Funder

National Aeronautics and Space Administration

National Science Foundation

National Center for Atmospheric Research

Canadian Space Agency

Climate Program Office

National Oceanic and Atmospheric Administration

Publisher

American Geophysical Union (AGU)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3