Modeling the Complete Nitrogen and Oxygen Isotopic Imprint of Nitrate Photolysis in Snow

Author:

Shi Guitao12ORCID,Buffen Aron M.3,Hu Ye1,Chai Jiajue4ORCID,Li Yilan1ORCID,Wang Danghe1,Hastings Meredith G.3ORCID

Affiliation:

1. Key Laboratory of Geographic Information Science (Ministry of Education) School of Geographic Sciences and State Key Laboratory of Estuarine and Coastal Research East China Normal University Shanghai China

2. Key Laboratory of Spatial‐temporal Big Data Analysis and Application of Natural Resources in Megacities Ministry of Natural Resources Shanghai China

3. Department of Earth Environmental and Planetary Sciences and Institute at Brown for Environment and Society Brown University Providence RI USA

4. Department of Chemistry State University of New York College of Environmental Science and Forestry Syracuse NY USA

Abstract

AbstractSnow nitrate is vulnerable to photolytic loss that causes isotopic alteration, and thus its isotopes can potentially track the extent of snow nitrate photolysis and its impacts in environments where loss is significant. Large increases in δ15N‐NO3 below the snow surface have been attributed to photolysis and this behavior is generally consistent amongst theoretical as well as lab and field studies. Oxygen isotope ratios are thought to be influenced by photolysis as well as secondary condensed‐phase chemistry, but the competing effects have yet to be reconciled. Here we use a model that simulates nitrate burial, photolytic fractionation, and re‐oxidation in snow to quantitatively assess these processes with the aim of developing a consistent framework for interpreting the photolytic effects of the complete nitrate isotopic composition (δ15N, δ18O, and Δ17O). This study reveals that isotopic effects of nitrate photolysis and aqueous‐phase re‐oxidation chemistry are important sources of uncertainties in modeling δ18O‐NO3.

Funder

National Science Fund for Distinguished Young Scholars

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3