Validating Finescale Parameterizations for the Eastern Arctic Ocean Internal Wave Field

Author:

Baumann Till M.12ORCID,Fer Ilker1ORCID,Schulz Kirstin3ORCID,Mohrholz Volker4ORCID

Affiliation:

1. Bjerknes Centre for Climate Research University of Bergen Bergen Norway

2. Now at Institute for Marine Research Bergen Norway

3. Oden Institute for Computational Engineering and Sciences The University of Texas at Austin TX Austin USA

4. Leibniz Institute for Baltic Sea Research Warnemünde Germany

Abstract

AbstractIn the Arctic Ocean, vertical transport of heat by turbulent mixing is ultimately coupled to the sea‐ice cover, with immediate and far‐reaching impacts on the climate and ecosystem. Unfortunately, direct observations of mixing are difficult, expensive and sparse. Finescale Parameterization (FS) of turbulent energy dissipation rate (ɛ) allows for the quantification of turbulence from breaking internal waves using standard measurements, such as profiles of hydrography and velocity. While FS proved to be reliable in mid‐latitudes, the Arctic Ocean internal wave field is distinct in terms of composition and energy level, rendering the applicability of FS uncertain. To test FS in a wide range of eastern Arctic conditions, we compiled data from eight cruises. All profiles used to calculate FS were collocated with in‐situ measurements of ɛ obtained from microstructure profilers. FS was applied between 50 and 450 m below the surface. Results show a satisfactory performance of FS, with 84% of FS‐derived ɛ being within a factor of 5 to observations. This improved to 90% when using lower‐noise velocity profiles of lowered current meters instead of ship‐mounted current meters. In our data, FS performance is independent of the shear‐strain ratio (Rω) and internal wave field bandwidth (N/f), but there is evidence that highly stratified environments with large potential energy, low turbulence and substantially non‐white shear spectra are less suitable for FS. A widely used formulation of FS using only hydrography and a prescribed Rω = 7 results in 73% of FS estimates being within a factor of 5 to observations.

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameterized Internal Wave Mixing in Three Ocean General Circulation Models;Journal of Advances in Modeling Earth Systems;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3