Affiliation:
1. Laboratoire LOCEAN‐IPSL Sorbonne Université (UPMC, University Paris 6) CNRS IRD MNHN Paris France
Abstract
AbstractWe investigated wintertime convection evolution in recent years over the Greenland Sea. This area is a major location regarding dense water production and supply of the lower limb of the Atlantic Meridional Overturning Circulation, a key component of the global climate. Previous studies mentioned an increase in Greenland Sea wintertime convection intensity during the 2000s in comparison with the previous decade till 2015/2016. Here, we further document the ongoing oceanic changes within the Greenland Sea through the Mercator Ocean Physical System, an operational ocean model with data‐assimilation. The model has shown a large variability, a later start and a decline of convection in the Greenland Sea in recent years. In particular, the depth of the annual maximum mixed layer diminished by 52% between 2008–2014 and 2015–2020, from 1,168 to 559 m, over the convective area. This decline of the convection depth is corroborated with Argo float observations. Within the Greenland Sea, hydrographic changes especially the increasing temperature are associated with isopycnal deepening and stratification strengthening. The stratification is building up at a larger rate in the Boreas Basin compared to the Greenland Basin. The changes of the Greenland Sea hydrography in the model are in part related to Atlantic Water spreading over the Boreas Basin and the eastern part of the Greenland Basin. The model also indicates a decrease in the intensity of the gyre in accordance with the isopycnal deepening while local surface winds and fluxes do not exhibit significant trends nor significant interannual variations.
Publisher
American Geophysical Union (AGU)
Subject
Earth and Planetary Sciences (miscellaneous),Space and Planetary Science,Geochemistry and Petrology,Geophysics,Oceanography
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献