An Assessment of Changes in the Thermal Environment during the COVID-19 Lockdown: Case Studies from the Greenland and Norwegian Seas

Author:

Shi Weifang1,Zhang Xue1,Zhang Hongye1

Affiliation:

1. College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

Abstract

The COVID-19 lockdown had a significant impact on human activities, reducing anthropogenic heat and CO2 emissions. To effectively assess the impact of the lockdown on the thermal environment, we used the sliding paired t-test, which we improved from the traditional sliding t-test by introducing the paired t-test for sliding statistical tests, to test the abrupt change in the thermal environment. Furthermore, an additive decomposition model and wavelet analysis method were used to analyze the characteristics of trend and irregular change, coherence, and phase difference of the time series data with respect to the thermal environment. We chose the Greenland Sea and the Norwegian Sea, regions highly sensitive to changes in climate and ocean circulation, as case studies and used remote sensing data of the sea surface temperature (SST) and the atmospheric CO2 concentration data obtained from the Goddard Earth Sciences Data and Information Services Center from January 2015 to December 2021 for the analysis. The results show that although the annual spatial mean SST in 2020 is lower than the mean of all 7 years in most areas of the two seas, there is no evidence of a significant mutation in the decrease in the SST during the lockdown in 2020 compared with the temperatures before, according to the sliding paired t-test. The analysis of the irregular components of the monthly mean SST decomposed by an additive decomposition model also does not show the anomalously low SST during the lockdown in 2020. In addition, the lockdown had almost no impact on the increasing trend of CO2 concentration. The wavelet analysis also shows that there is no obvious anomaly in coherence or phase difference between the periodic variation of the SST and the CO2 concentrations in 2020 compared with other years. These results suggest that the direct effect of the COVID-19 lockdown on the thermal environment of the study area could be negligible.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3