Continued warming of deep waters in the Fram Strait
-
Published:2024-07-17
Issue:4
Volume:20
Page:917-930
-
ISSN:1812-0792
-
Container-title:Ocean Science
-
language:en
-
Short-container-title:Ocean Sci.
Author:
Karam SalarORCID, Heuzé CélineORCID, Hoppmann MarioORCID, de Steur LauraORCID
Abstract
Abstract. The Fram Strait is the only deep gateway between the Arctic and the rest of the World Ocean, and it is thus a key region to understand how the deep Arctic will evolve. However, studies and data regarding the deep ocean are scarce, making it difficult to understand its role in the climate system. Here, we analyse oceanographic data obtained close to the Fram Strait sill depth of 2500 m by two long-term mooring locations (F11 and HG-FEVI) in the Fram Strait between 2010–2023 to investigate long-term changes in the hydrographic properties. For additional context, we compile hydrographic profile data from the 1980s for the adjacent basins: the Greenland Sea and the Eurasian Basin. At mooring F11 in the western Fram Strait, we find a clear seasonality, with increased Greenland Sea Deep Water (GSDW) presence during summer and increased Eurasian Basin Deep Water (EBDW) presence during winter. Evaluating long-term changes, we find a modest temperature increase of ∼ 0.1 °C for EBDW from the 1980s. For GSDW, south of the Fram Strait, we find a strong temperature increase of ∼ 0.4–0.5 °C for the same period. The different warming rates have led to GSDW becoming warmer than EBDW since ∼ 2017–2018. This means that the Greenland Sea is no longer a heat sink for the Arctic Ocean at depth but is rather a heat source. It is therefore possible that EBDW temperatures will increase faster in the future.
Publisher
Copernicus GmbH
Reference72 articles.
1. Abot, L., Provost, C., and Poli, L.: Recent Convection Decline in the Greenland Sea: Insights From the Mercator Ocean System Over 2008–2020, J. Geophys. Res.-Ocean., 128, e2022JC019320, https://doi.org/10.1029/2022JC019320, 2023. a, b 2. Bashmachnikov, I. L., Fedorov, A. M., Golubkin, P. A., Vesman, A. V., Selyuzhenok, V. V., Gnatiuk, N. V., Bobylev, L. P., Hodges, K. I., and Dukhovskoy, D. S.: Mechanisms of interannual variability of deep convection in the Greenland sea, Deep-Sea Res. Pt. I, 174, 103557, https://doi.org/10.1016/j.dsr.2021.103557, 2021. a, b 3. Bauch, D., Schlosser, P., and Fairbanks, R. G.: Freshwater balance and the sources of deep and bottom waters in the Arctic Ocean inferred from the distribution of H218O, Prog. Oceanogr., 35, 53–80, https://doi.org/10.1016/0079-6611(95)00005-2, 1995. a, b 4. Bauerfeind, E., Beszczynska-Möller, A., von Appen, W.-J., Soltwedel, T., Sablotny, B., and Lochthofen, N.: Physical oceanography and current meter data from mooring FEVI22 at Hausgarten IV, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.845616, 2015a. a, b, c 5. Bauerfeind, E., Beszczynska-Möller, A., von Appen, W.-J., Soltwedel, T., Sablotny, B., and Lochthofen, N.: Physical oceanography and current meter data from mooring FEVI24 at Hausgarten IV, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.845618, 2015b. a, b, c
|
|