Affiliation:
1. Met Office Hadley Centre Exeter UK
2. University of Leeds Met Office Strategic (LUMOS) Research Group University of Leeds Leeds UK
3. Institute of Climate and Atmospheric Science (ICAS) School of Earth and Environment University of Leeds Leeds UK
4. Department of Environmental Sciences and Engineering University of North Carolina at Chapel Hill Chapel Hill NC USA
5. Department of Mathematics and Statistics Global Systems Institute University of Exeter Exeter UK
Abstract
AbstractElevated surface concentrations of ozone and fine particulate matter (PM2.5) can lead to poor air quality and detrimental impacts on human health. These pollutants are also termed Near‐Term Climate Forcers (NTCFs) as they can also influence the Earth's radiative balance on timescales shorter than long‐lived greenhouse gases. Here we use the Earth system model, UKESM1, to simulate the change in surface ozone and PM2.5 concentrations from different NTCF mitigation scenarios, conducted as part of the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). These are then combined with relative risk estimates and projected changes in population demographics, to estimate the mortality burden attributable to long‐term exposure to ambient air pollution. Scenarios that involve the strong mitigation of air pollutant emissions yield large future benefits to human health (25%), particularly across Asia for black carbon (7%), when compared to the future reference pathway. However, if anthropogenic emissions follow the reference pathway, then impacts to human health worsen over South Asia in the short term (11%) and across Africa (20%) in the longer term. Future climate change impacts on air pollutants can offset some of the health benefits achieved by emission mitigation measures over Europe for PM2.5 and East Asia for ozone. In addition, differences in the future chemical environment over regions are important considerations for mitigation measures to achieve the largest benefit to human health. Future policy measures to mitigate climate warming need to also consider the impact on air quality and human health across different regions to achieve the maximum co‐benefits.
Funder
Newton Fund
Department for Business, Energy and Industrial Strategy, UK Government
National Aeronautics and Space Administration
Publisher
American Geophysical Union (AGU)
Subject
Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Epidemiology,Global and Planetary Change
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献