Exploring the Solar Wind‐Planetary Interaction at Mars: Implication for Magnetic Reconnection

Author:

Bowers Charles F.1ORCID,DiBraccio Gina A.2ORCID,Slavin James A.1ORCID,Gruesbeck Jacob R.2ORCID,Weber Tristan23ORCID,Xu Shaosui4ORCID,Romanelli Norberto25ORCID,Harada Yuki6ORCID

Affiliation:

1. Department of Climate and Space Sciences and Engineering University of Michigan Ann Arbor MI USA

2. Solar System Exploration Division NASA Goddard Space Flight Center Greenbelt MD USA

3. Department of Physics and Astronomy Howard University Washington DC USA

4. Space Sciences Laboratory University of California Berkeley CA USA

5. Department of Astronomy University of Maryland College Park MD USA

6. Department of Geophysics Graduate School of Science Kyoto University Kyoto Japan

Abstract

AbstractThe Martian crustal magnetic anomalies present a varied, asymmetric obstacle to the imposing draped interplanetary magnetic field (IMF) and solar wind plasma. Magnetic reconnection, a ubiquitous plasma phenomenon responsible for transferring energy and changing magnetic field topology, has been observed throughout the Martian magnetosphere. More specifically, reconnection can occur as a result of the interaction between crustal fields and the IMF, however, the global implications and changes to the overall magnetospheric structure of Mars have yet to be fully understood. Here, we present an analysis to determine these global implications by investigating external conditions that favor reconnection with the underlying crustal anomalies at Mars. To do so, we plot a map of the crustal anomalies' strength and orientation compiled from magnetic field data collected throughout the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Then, we create “shear maps” which calculate and plot the angle of shear between the crustal fields and a chosen external field orientation. From there we define a “shear index” to quantify the susceptibility of a region to undergo reconnection based on a given overlaid, external field orientation and the resulting shear map for that region. We demonstrate that the shear analysis technique augments analysis of local reconnection events and suggests southward IMF conditions should favor dayside magnetic reconnection on a more global scale at Mars.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3