Abstract
Abstract
Mars’s magnetosphere is hybrid, having contributions from both an induced magnetosphere like Venus and the localized crustal magnetic fields. However, the planetary fields also include large-scale, more global components. In this study, we investigate their role in Mars’s magnetospheric topological responses to the interplanetary magnetic field (IMF) clock angle using observations from the Mars Atmospheric Volatile and EvolutioN mission. We show that the large-scale planetary field has a “dipole-like” influence on the Mars global magnetosphere by examining the open field topology. We find that the “dipole-like” planetary field, as at Earth, results in a more open magnetosphere during southward IMF. The clock angle effects on the twisted magnetotail current sheet are similarly consistent with this analogy. It reinforces the idea that Mars’s magnetosphere and solar wind interaction are more Earth-like than previously thought.
Funder
National Aeronautics and Space Administration
Centre National d'Etudes Spatiales
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献