Magnetic Reconnection at Planetary Bodies and Astrospheres

Author:

Gershman Daniel J.ORCID,Fuselier Stephen A.,Cohen Ian J.,Turner Drew L.,Liu Yi-Hsin,Chen Li-Jen,Phan Tai D.,Stawarz Julia E.,DiBraccio Gina A.,Masters Adam,Ebert Robert W.,Sun Weijie,Harada Yuki,Swisdak Marc

Abstract

AbstractMagnetic reconnection is a fundamental mechanism for the transport of mass and energy in planetary magnetospheres and astrospheres. While the process of reconnection is itself ubiquitous across a multitude of systems, the techniques used for its analysis can vary across scientific disciplines. Here we frame the latest understanding of reconnection theory by missions such as NASA’s Magnetospheric Multiscale (MMS) mission for use throughout the solar system and beyond. We discuss how reconnection can couple magnetized obstacles to both sub- and super-magnetosonic upstream flows. In addition, we address the need to model sheath plasmas and field-line draping around an obstacle to accurately parameterize the possibility for reconnection to occur. We conclude with a discussion of how reconnection energy conversion rates scale throughout the solar system. The results presented are not only applicable to within our solar system but also to astrospheres and exoplanets, such as the first recently detected exoplanet magnetosphere of HAT-11-1b.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3