Quantifying External Energy Inputs for Giant Planet Magnetospheres

Author:

Gershman Daniel J.1ORCID,DiBraccio Gina A.1ORCID

Affiliation:

1. NASA Goddard Space Flight Center Greenbelt MD USA

Abstract

AbstractThe long‐standing “energy crisis” at the giant planets refers to the anomalous heating of planetary thermospheres compared to the available energy from solar irradiance. The coupling between planetary magnetospheres and their upper atmospheres is thought to address these crises, though the sources and pathways of energy transport have not been fully explored at each system. In particular, the total available energy from the upstream solar wind at each planet has not been comprehensively quantified. Here we apply recently developed models of energy conversion by magnetic reconnection and the Kelvin‐Helmholtz instability to each of the Giant Planets, providing estimates of the average external energy inputs for each system between 1985 and 2020. We find that external energy associated with solar‐wind‐magnetospheric coupling significantly exceeds that from solar extreme ultraviolet photons. While internal energy sources are known to dominate at Jupiter and Saturn, external sources may be significant at Uranus and Neptune.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3