Adiabatic Logic Based Energy Efficient Architecture of 1-Bit Magnitude Comparator for IOT Applications

Author:

Minakshi Sanadhya Minakshi Sanadhya,Minakshi Sanadhya Devendra Kumar Sharma

Abstract

<p>The Internet of Things (IoT) applies the sensors and microcontrollers and links them through the internet. The eventual&nbsp;objective of low-power devices for Internet of Things is to lesser the overall system power and to extend battery life. For the development of energy efficient IoT devices, novel adiabatic techniques are proposed. By improving the performance of the comparator, one can improvise the whole system performance. The efficacy of computing devices depends on the performance of arithmetic circuits, including comparator. This paper proposes 1-bit comparator design using adiabatic techniques such as DC-DB PFAL (Direct current diode-based positive feedback adiabatic logic) and MPFAL (Modify positive feedback adiabatic logic) which are well-suited with an extensive range of applications (e.g. IoT sensors and an inbuilt analog to digital converter). For performance analysis, the results are compared together along with the other adiabatic and non adiabatic designs already reported in the literature. This paper proposes a way to decrease the dissipation of power and transistor count in binary circuits as it is one of the primary concerns. From the results, it is found that the design using DC-DB PFAL logic shows an improvement in power-delay-product of 69%, 94% and 90% compared to MPFAL, PFAL and ECRL techniques respectively.</p> <p>&nbsp;</p>

Publisher

Angle Publishing Co., Ltd.

Subject

Computer Networks and Communications,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 1-Bit Comparator Designed by Multithreshold FinFET based Sleep Transistor Technique in 18nm;2023 International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2023-04-29

2. CNTFET-based design of low power charge pump technique-based voltage multiplier;2023 IEEE Devices for Integrated Circuit (DevIC);2023-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3