Kinematic Strategies for Upper Arm–Forearm Coordination in Three Dimensions

Author:

Medendorp W. P.1,Crawford J. D.2,Henriques D.Y.P.2,Van Gisbergen J.A.M.1,Gielen C.C.A.M.1

Affiliation:

1. Department of Medical Physics and Biophysics, University of Nijmegen, NL 6525 EZ Nijmegen, The Netherlands

2. Medical Research Council Group for Action and Perception, Centre for Vision Research and Departments of Psychology and Biology, York University, Toronto, Ontario M3J 1P3, Canada; and

Abstract

This study addressed the question of how the three-dimensional (3-D) control strategy for the upper arm depends on what the forearm is doing. Subjects were instructed to point a laser—attached in line with the upper arm—toward various visual targets, such that two-dimensional (2-D) pointing directions of the upper arm were held constant across different tasks. For each such task, subjects maintained one of several static upper arm–forearm configurations, i.e., each with a set elbow angle and forearm orientation. Upper arm, forearm, and eye orientations were measured with the use of 3-D search coils. The results confirmed that Donders' law (a behavioral restriction of 3-D orientation vectors to a 2-D “surface”) does not hold across all pointing tasks, i.e., for a given pointing target, upper arm torsion varied widely. However, for any one static elbow configuration, torsional variance was considerably reduced and was independent of previous arm position, resulting in a thin, Donders-like surface of orientation vectors. More importantly, the shape of this surface (which describes upper arm torsion as a function of its 2-D pointing direction) depended on both elbow angle and forearm orientation. For pointing with the arm fully extended or with the elbow flexed in the horizontal plane, a Listing's-law-like strategy was observed, minimizing shoulder rotations to and from center at the cost of position-dependent tilts in the forearm. In contrast, when the arm was bent in the vertical plane, the surface of best fit showed a Fick-like twist that increased continuously as a function of static elbow flexion, thereby reducing position-dependent tilts of the forearm with respect to gravity. In each case, the torsional variance from these surfaces remained constant, suggesting that Donders' law was obeyed equally well for each task condition. Further experiments established that these kinematic rules were independent of gaze direction and eye orientation, suggesting that Donders' law of the arm does not coordinate with Listing's law for the eye. These results revive the idea that Donders' law is an important governing principle for the control of arm movements but also suggest that its various forms may only be limited manifestations of a more general set of context-dependent kinematic rules. We propose that these rules are implemented by neural velocity commands arising as a function of initial arm orientation and desired pointing direction, calculated such that the torsional orientation of the upper arm is implicitly coordinated with desired forearm posture.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3