Three-Dimensional Eye-Head Coordination During Gaze Saccades in the Primate

Author:

Crawford J. Douglas1,Ceylan Melike Z.1,Klier Eliana M.1,Guitton Daniel2

Affiliation:

1. Centre for Vision Research and Departments of Psychology and Biology, York University, Toronto, Ontario M3J 1P3; and

2. Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada

Abstract

Three-dimensional eye-head coordination during gaze saccades in the primate. The purpose of this investigation was to describe the neural constraints on three-dimensional (3-D) orientations of the eye in space (Es), head in space (Hs), and eye in head (Eh) during visual fixations in the monkey and the control strategies used to implement these constraints during head-free gaze saccades. Dual scleral search coil signals were used to compute 3-D orientation quaternions, two-dimensional (2-D) direction vectors, and 3-D angular velocity vectors for both the eye and head in three monkeys during the following visual tasks: radial to/from center, repetitive horizontal, nonrepetitive oblique, random (wide 2-D range), and random with pin-hole goggles. Although 2-D gaze direction (of Es) was controlled more tightly than the contributing 2-D Hs and Eh components, the torsional standard deviation of Es was greater (mean 3.55°) than Hs (3.10°), which in turn was greater than Eh (1.87°) during random fixations. Thus the 3-D Es range appeared to be the byproduct of Hs and Eh constraints, resulting in a pseudoplanar Es range that was twisted (in orthogonal coordinates) like the zero torsion range of Fick coordinates. The Hs fixation range was similarly Fick-like, whereas the Eh fixation range was quasiplanar. The latter Eh range was maintained through exquisite saccade/slow phase coordination, i.e., during each head movement, multiple anticipatory saccades drove the eye torsionally out of the planar range such that subsequent slow phases drove the eye back toward the fixation range. The Fick-like Hs constraint was maintained by the following strategies: first, during purely vertical/horizontal movements, the head rotated about constantly oriented axes that closely resembled physical Fick gimbals, i.e., about head-fixed horizontal axes and space-fixed vertical axes, respectively (although in 1 animal, the latter constraint was relaxed during repetitive horizontal movements, allowing for trajectory optimization). However, during large oblique movements, head orientation made transient but dramatic departures from the zero-torsion Fick surface, taking the shortest path between two torsionally eccentric fixation points on the surface. Moreover, in the pin-hole goggle task, the head-orientation range flattened significantly, suggesting a task-dependent default strategy similar to Listing’s law. These and previous observations suggest two quasi-independent brain stem circuits: an oculomotor 2-D to 3-D transformation that coordinates anticipatory saccades with slow phases to uphold Listing’s law, and a flexible “Fick operator” that selects head motor error; both nested within a dynamic gaze feedback loop.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3