Human Eye-Head Gaze Shifts in a Distractor Task. I. Truncated Gaze Shifts

Author:

Corneil Brian D.12,Hing Christine A.12,Bautista Dorothy V.3,Munoz Douglas P.12

Affiliation:

1. Medical Research Council Group in Sensory-Motor Neuroscience,

2. Department of Physiology, and

3. Department of Ophthalmology, Queen’s University, Kingston, Ontario K7L 3N6, Canada

Abstract

This study examines two current ideas regarding the control of eye-head gaze shifts. The first idea stems from recent studies involving electrical stimulation in the primate superior colliculus that suggest that a residual feedback of gaze displacement persists for ∼100 ms after completion of a gaze shift. In light of this hypothesis, we examined the accuracy of gaze shifts generated very soon after the end of a preceding gaze shift. Human subjects were presented with a visual or auditory target along with an accompanying stimulus of the other modality. The accompanying stimulus appeared either at the same place as the target or at the diametrically opposite position, in which case it was termed a distractor. Subjects often made an incorrect gaze shift (IGS) in the direction of the distractor, followed by a recorrect gaze shift (RGS) in the direction of the target. We found that RGSs were accurately driven to the target, even when they followed IGSs by <5 ms, regardless of the size of the IGS. The second idea is that a gaze shift cannot be cancelled in midflight. The end point of IGSs frequently fell short of the distractor. The dynamics of these movements, and of the head movement components during the IGSs in particular, suggests that these hypometric IGSs were planned for a much larger excursion but were truncated and superceded by the reversing RGSs. These results emphasize that the gaze shifting system can change the desired goal of a gaze shift in midflight and that the superceding movement is accurate regardless of the metrics or timing of the preceding movement.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3