Primate Antisaccades. I. Behavioral Characteristics

Author:

Amador Nelly1,Schlag-Rey Madeleine1,Schlag John1

Affiliation:

1. Department of Neurobiology and Brain Research Institute, University of California at Los Angeles School of Medicine, Los Angeles, California 90095-1763

Abstract

Amador, Nelly, Madeleine Schlag-Rey, and John Schlag. Primate antisaccades. I. Behavioral characteristics. J. Neurophysiol. 80: 1775–1786, 1998. The antisaccade task requires a subject to make a saccade to an unmarked location opposite to a flashed stimulus. This task was originally designed to study saccades made to a goal specified by instructions. Interest for this paradigm surged after the discovery that frontal lobe lesions specifically and severely affect human performance of antisaccades while prosaccades (i.e., saccades directed to the visual stimulus) are facilitated. Training monkeys to perform antisaccades was rarely attempted in the past, and this study is the first one that describes in detail the properties of such antisaccades compared with randomly intermingled prosaccades of varying amplitude in all directions. Such randomization was found essential to force the monkeys to use the instruction cue (pro- or anti-) and the location cue (peripheral stimulus) provided within a trial rather than to direct their saccades to the location of past rewards. Each trial began with the onset of a central fixation target that conveyed by its shape the instruction to make a pro- or an antisaccade to a subsequent peripheral stimulus. In one version of the task, the monkey was allowed to make an immediate saccade to the goal; in a second version, the saccade had to wait for a go signal. Analyses of the accuracy, velocity, and latency of antisaccades compared with prosaccades were performed on a sample of 7,430 pro-/antisaccades in the “immediate saccade” task (delayed saccades suffering from known distortions). Error rates fluctuated ∼25%. Results were the same for the two monkeys with respect to accuracy and velocity, but they differed in terms of reaction time. Both monkeys generated antisaccades to stimuli in all directions, at various eccentricities, but antisaccades were significantly less accurate and slower than prosaccades elicited by the same stimuli. Interestingly, saccades to the stimulus could be followed by appropriate antisaccades with no intersaccadic interval. Such instances are here referred to as “turnaround saccades.” Because they occurred sometimes with a long latency, turnaround saccades did not simply reflect the cancellation of an early foveation reflex. Consistent with human data, latencies of one monkey were longer for antisaccades than for prosaccades, but the reverse was true for the other monkey who was trained differently. In summary, this study demonstrates the feasibility of providing a subhuman primate model of antisaccade performance, but at the same time it suggests some irreducible differences between human and monkey performance.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3