Affiliation:
1. Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, The Netherlands;
2. Departments of 2Physiology and Pharmacology and
3. Psychology, University of Western Ontario; and
4. The Brain and Mind Institute, Robarts Research Institute, London, Ontario, Canada
Abstract
Multisensory integration enables rapid and accurate behavior. To orient in space, sensory information registered initially in different reference frames has to be integrated with the current postural information to produce an appropriate motor response. In some postures, multisensory integration requires convergence of sensory evidence across hemispheres, which would presumably lessen or hinder integration. Here, we examined orienting gaze shifts in humans to visual, tactile, or visuotactile stimuli when the hands were either in a default uncrossed posture or a crossed posture requiring convergence across hemispheres. Surprisingly, we observed the greatest benefits of multisensory integration in the crossed posture, as indexed by reaction time (RT) decreases. Moreover, such shortening of RTs to multisensory stimuli did not come at the cost of increased error propensity. To explain these results, we propose that two accepted principles of multisensory integration, the spatial principle and inverse effectiveness, dynamically interact to aid the rapid and accurate resolution of complex sensorimotor transformations. First, early mutual inhibition of initial visual and tactile responses registered in different hemispheres reduces error propensity. Second, inverse effectiveness in the integration of the weakened visual response with the remapped tactile representation expedites the generation of the correct motor response. Our results imply that the concept of inverse effectiveness, which is usually associated with external stimulus properties, might extend to internal spatial representations that are more complex given certain body postures.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献