Motor unit recruitment strategies investigated by surface EMG variables

Author:

Farina Dario12,Fosci Mauro1,Merletti Roberto1

Affiliation:

1. Centro di Bioingegneria, Department of Electronics, Politecnico di Torino, Torino 10129, Italy; and

2. Departement d'Automatique et Informatique Appliquée, Ecole Centrale de Nantes, F-44321 Nantes, France

Abstract

During isometric contractions of increasing strength, motor units (MUs) are recruited by the central nervous system in an orderly manner starting with the smallest, with muscle fibers that usually show the lowest conduction velocity (CV). Theory predicts that the higher the velocity of propagation of the action potential, the higher the power at high frequencies of the detected surface signal. These considerations suggest that the power spectral density of the surface detected electromyogram (EMG) signal may give indications about the MU recruitment process. The purpose of this paper is to investigate the potential and limitations of spectral analysis of the surface EMG signal as a technique for the investigation of muscle force control. The study is based on a simulation approach and on an experimental investigation of the properties of surface EMG signals detected from the biceps brachii during isometric linearly increasing torque contractions. Both simulation and experimental data indicate that volume conductor properties play an important role as confounding factors that may mask any relation between EMG spectral variables and estimated CV as a size principle parameter during ramp contractions. The correlation between spectral variables and CV is thus significantly lower when the MU pool is not stable than during constant-torque isometric contractions. Our results do not support the establishment of a general relationship between spectral EMG variables and torque or recruitment strategy.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3