Affiliation:
1. Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, Illinois 61802
Abstract
The strong ion approach provides a quantitative physicochemical method for describing the mechanism for an acid-base disturbance. The approach requires species-specific values for the total concentration of plasma nonvolatile buffers (Atot) and the effective dissociation constant for plasma nonvolatile buffers ( K a), but these values have not been determined for human plasma. Accordingly, the purpose of this study was to calculate accurate Atot and K a values using data obtained from in vitro strong ion titration and CO2tonometry. The calculated values for Atot (24.1 mmol/l) and K a (1.05 × 10−7) were significantly ( P < 0.05) different from the experimentally determined values for horse plasma and differed from the empirically assumed values for human plasma (Atot = 19.0 meq/l and K a = 3.0 × 10−7). The derivatives of pH with respect to the three independent variables [strong ion difference (SID), Pco 2, and Atot] of the strong ion approach were calculated as follows: [Formula: see text] [Formula: see text], [Formula: see text]where S is solubility of CO2 in plasma. The derivatives provide a useful method for calculating the effect of independent changes in SID+, Pco 2, and Atot on plasma pH. The calculated values for Atot and K a should facilitate application of the strong ion approach to acid-base disturbances in humans.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献