Alkaline Liquid Ventilation of the Membrane Lung for Extracorporeal Carbon Dioxide Removal (ECCO2R): In Vitro Study

Author:

Vivona Luigi,Battistin Michele,Carlesso Eleonora,Langer ThomasORCID,Valsecchi Carlo,Colombo Sebastiano MariaORCID,Todaro Serena,Gatti Stefano,Florio Gaetano,Pesenti Antonio,Grasselli Giacomo,Zanella AlbertoORCID

Abstract

Extracorporeal carbon dioxide removal (ECCO2R) is a promising strategy to manage acute respiratory failure. We hypothesized that ECCO2R could be enhanced by ventilating the membrane lung with a sodium hydroxide (NaOH) solution with high CO2 absorbing capacity. A computed mathematical model was implemented to assess NaOH–CO2 interactions. Subsequently, we compared NaOH infusion, named “alkaline liquid ventilation”, to conventional oxygen sweeping flows. We built an extracorporeal circuit with two polypropylene membrane lungs, one to remove CO2 and the other to maintain a constant PCO2 (60 ± 2 mmHg). The circuit was primed with swine blood. Blood flow was 500 mL × min−1. After testing the safety and feasibility of increasing concentrations of aqueous NaOH (up to 100 mmol × L−1), the CO2 removal capacity of sweeping oxygen was compared to that of 100 mmol × L−1 NaOH. We performed six experiments to randomly test four sweep flows (100, 250, 500, 1000 mL × min−1) for each fluid plus 10 L × min−1 oxygen. Alkaline liquid ventilation proved to be feasible and safe. No damages or hemolysis were detected. NaOH showed higher CO2 removal capacity compared to oxygen for flows up to 1 L × min−1. However, the highest CO2 extraction power exerted by NaOH was comparable to that of 10 L × min−1 oxygen. Further studies with dedicated devices are required to exploit potential clinical applications of alkaline liquid ventilation.

Funder

Ministero della Salute

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel Strategies to Enhance the Efficiency of Extracorporeal CO2 Removal;Annual Update in Intensive Care and Emergency Medicine 2023;2023

2. Challenges in the Extracorporeal Membrane Oxygenation Era;Membranes;2021-10-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3