β1-subunit of BK channels regulates arterial wall [Ca2+] and diameter in mouse cerebral arteries

Author:

Löhn Matthias1,Lauterbach Birgit1,Haller Hermann1,Pongs Olaf1,Luft Friedrich C.1,Gollasch Maik1

Affiliation:

1. Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Charité University Hospitals, Humboldt University of Berlin, D-13125 Berlin; Institut für Neuronale Signalverarbeitung, ZMNH, University of Hamburg, D-20246 Hamburg; and Department of Nephrology, Medical School Hannover, D-30625 Hannover, Germany

Abstract

Mice with a disrupted β1(BKβ1)-subunit of the large-conductance Ca2+-activated K+ (BK) channel gene develop systemic hypertension and cardiac hypertrophy, which is likely caused by uncoupling of Ca2+ sparks to BK channels in arterial smooth muscle cells. However, little is known about the physiological levels of global intracellular Ca2+ concentration ([Ca2+]i) and its regulation by Ca2+ sparks and BK channel subunits. We utilized a BKβ1 knockout C57BL/6 mouse model and studied the effects of inhibitors of ryanodine receptor and BK channels on the global [Ca2+]i and diameter of small cerebral arteries pressurized to 60 mmHg. Ryanodine (10 μM) or iberiotoxin (100 nM) increased [Ca2+]i by ∼75 nM and constricted +/+ BKβ1 wild-type arteries (pressurized to 60 mmHg) with myogenic tone by ∼10 μm. In contrast, ryanodine (10 μM) or iberiotoxin (100 nM) had no significant effect on [Ca2+]i and diameter of −/− BKβ1-pressurized (60 mmHg) arteries. These results are consistent with the idea that Ca2+ sparks in arterial smooth muscle cells limit myogenic tone through activation of BK channels. The activation of BK channels by Ca2+ sparks reduces the voltage-dependent Ca2+ influx and [Ca2+]i through tonic hyperpolarization. Deletion of BKβ1 disrupts this negative feedback mechanism, leading to increased arterial tone through an increase in global [Ca2+]i.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Activation mechanism and novel binding sites of the BKCachannel activator CTIBD;Life Science Alliance;2024-08-01

2. Vascular mechanotransduction;Physiological Reviews;2023-04-01

3. Arterial myogenic response and aging;Ageing Research Reviews;2023-02

4. Ca2+-Activated K+ Channels and the Regulation of the Uteroplacental Circulation;International Journal of Molecular Sciences;2023-01-10

5. Cerebral Vascular Biology in Health and Disease;Stroke;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3