BOLD Adaptation in Vibrotactile Stimulation: Neuronal Networks Involved in Frequency Discrimination

Author:

Li Hegner Yiwen,Saur Ralf,Veit Ralf,Butts Raymond,Leiberg Susanne,Grodd Wolfgang,Braun Christoph

Abstract

The present functional magnetic resonance imaging (fMRI) study investigated human brain regions subserving the discrimination of vibrotactile frequency. An event-related adaptation paradigm was used in which blood-oxygen-level-dependent (BOLD) responses are lower to same compared with different pairs of stimuli (BOLD adaptation). This adaptation effect serves as an indicator for feature-specific responding of neuronal subpopulations. Subjects had to discriminate two vibrotactile stimuli sequentially applied with a delay of 600 ms to their left middle fingertip. The stimulus frequency was in the flutter range of 18–26 Hz. In half of the trials, the two stimuli possessed identical frequency (same), whereas in the other half, a frequency difference of ±2 Hz was used (diff). As a result, BOLD adaptation was observed in the contralateral primary somatosensory cortex (S1), precentral gyrus, superior temporal gyrus (STG); ipsilateral insula as well as bilateral secondary somatosensory cortex and supplementary motor area. When statistically comparing the BOLD time courses between same and diff trials in these cortical areas, it was found that the vibrotactile BOLD adaptation is initiated in the contralateral S1 and STG simultaneously. These findings suggest that the cortical areas responsive to the frequency difference between two serially presented stimuli sequentially process the frequency of a vibrotactile stimulus and constitute a putative neuronal network underlying human vibrotactile frequency discrimination.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3