Reduced Cerebellar Brain Inhibition and Vibrotactile Perception in Response to Mechanical Hand Stimulation at Flutter Frequency

Author:

Christova MonicaORCID,Sylwester Victoria,Gallasch Eugen,Fresnoza Shane

Abstract

Abstract The cerebellum is traditionally considered a movement control structure because of its established afferent and efferent anatomical and functional connections with the motor cortex. In the last decade, studies also proposed its involvement in perception, particularly somatosensory acquisition and prediction of the sensory consequences of movement. However, compared to its role in motor control, the cerebellum’s specific role or modulatory influence on other brain areas involved in sensory perception, specifically the primary sensorimotor cortex, is less clear. In the present study, we explored whether peripherally applied vibrotactile stimuli at flutter frequency affect functional cerebello-cortical connections. In 17 healthy volunteers, changes in cerebellar brain inhibition (CBI) and vibration perception threshold (VPT) were measured before and after a 20-min right hand mechanical stimulation at 25 Hz. 5 Hz mechanical stimulation of the right foot served as an active control condition. Performance in a Grooved Pegboard test (GPT) was also measured to assess stimulation’s impact on motor performance. Hand stimulation caused a reduction in CBI (13.16%) and increased VPT but had no specific effect on GPT performance, while foot stimulation had no significant effect on all measures. The result added evidence to the functional connections between the cerebellum and primary motor cortex, as shown by CBI reduction. Meanwhile, the parallel increase in VPT indirectly suggests that the cerebellum influences the processing of vibrotactile stimulus through motor-sensory interactions.

Funder

Medical University of Graz

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cerebellar Roles in Motor and Social Functions and Implications for ASD;The Cerebellum;2024-07-17

2. Ambulance Optimal Routine Path Detection Using Folium and Polygonal Path Finding;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3