Author:
Roberts Roberta D.,Loomes Aldrin R.,Kwok Hoi Fei,Wing Alan M.,Allen Harriet A.
Abstract
IntroductionPsychophysical studies suggest texture perception is mediated by spatial and vibration codes (duplex theory). Vibration coding, driven by relative motion between digit and stimulus, is involved in the perception of very fine gratings whereas coarse texture perception depends more on spatial coding, which does not require relative motion.MethodsWe examined cortical activation, using functional Magnetic Resonance Imaging associated with fine and coarse tactile spatial gratings applied by sliding or touching (sliding vs. static contact) on the index finger pad.ResultsWe found regions, contralateral to the stimulated digit, in BA1 in S1, OP1, OP3, and OP4 in S2, and in auditory cortex, which were significantly more activated by sliding gratings but did not find this pattern in visual cortex. Regions in brain areas activated by vibrotactile stimuli (including auditory cortex) were also modulated by whether or not the gratings moved. In a control study we showed that this contrast persisted when the salience of the static condition was increased by using a double touch.DiscussionThese findings suggest that vibration from sliding touch invokes multisensory cortical mechanisms in tactile processing of roughness. However, we did not find evidence of a separate visual region activated by static touch nor was there a dissociation between cortical response to fine vs. coarse gratings as might have been expected from duplex theory.