Serum alkaline phosphatase activity is regulated by a chromosomal region containing the alkaline phosphatase 2 gene (Akp2) in C57BL/6J and DBA/2J mice

Author:

Foreman Jennifer E.12,Blizard David A.1,Gerhard Glenn3,Mack Holly A.14,Lang Dean H.15,Van Nimwegen Kathryn L.14,Vogler George P.14,Stout Joseph T.1,Shihabi Zakariya K.6,Griffith James W.7,Lakoski Joan M.8,McClearn Gerald E.14,Vandenbergh David J.124

Affiliation:

1. Center for Developmental and Health Genetics

2. Intercollege Program in Genetics

3. Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania

4. Department of Biobehavioral Health

5. Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania

6. Department of Pathology, Wake Forest University Medical Center, Winston-Salem, North Carolina

7. Department of Comparative Medicine, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania

8. Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania

Abstract

Quantitative trait locus (QTL) analyses were conducted to identify chromosomal regions that contribute to variability in serum alkaline phosphatase (AP) enzyme activity in mice derived from the C57BL/6J (B6) and DBA/2J (D2) inbred strains. Serum AP was measured in 400 B6D2 F2mice at 5 mo and 400 B6D2 F2mice at 15 mo of age that were genotyped at 96 microsatellite markers, and in 19 BXD recombinant inbred (RI) strains at 5 mo of age. A QTL on the distal end of chromosome 4 was present in all sex- and age-specific analyses with a peak logarithm of odds (LOD) score of 20.36 at 58.51 cM. The Akp2 gene, which encodes the major serum AP isozyme, falls within this QTL region at 70.2 cM where the LOD score reached 13.2 (LOD significance level set at 4.3). Serum AP activity was directly related to the number of D2 alleles of a single nucleotide polymorphism in the 5′-flanking region of the Akp2 gene, although no strain-related differences in hepatic expression of Akp2 RNA were found. A variety of sequence polymorphisms in this chromosomal region could be responsible for the differences in serum AP activity; the Akp2 gene, however, with several known amino acid substitutions between protein sequences of the B6 and D2 strains, is a leading candidate.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3