A Combinatorial Method for Analyzing Sequential Firing Patterns Involving an Arbitrary Number of Neurons Based on Relative Time Order

Author:

Lee Albert K.1,Wilson Matthew A.1

Affiliation:

1. Picower Center for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Information processing in the brain is believed to require coordinated activity across many neurons. With the recent development of techniques for simultaneously recording the spiking activity of large numbers of individual neurons, the search for complex multicell firing patterns that could help reveal this neural code has become possible. Here we develop a new approach for analyzing sequential firing patterns involving an arbitrary number of neurons based on relative firing order. Specifically, we develop a combinatorial method for quantifying the degree of matching between a “reference sequence” of N distinct “letters” (representing a particular target order of firing by N cells) and an arbitrarily long “word” composed of any subset of those letters including repeats (representing the relative time order of spikes in an arbitrary firing pattern). The method involves computing the probability that a random permutation of the word's letters would by chance alone match the reference sequence as well as or better than the actual word does, assuming all permutations were equally likely. Lower probabilities thus indicate better matching. The overall degree and statistical significance of sequence matching across a heterogeneous set of words (such as those produced during the course of an experiment) can be computed from the corresponding set of probabilities. This approach can reduce the sample size problem associated with analyzing complex firing patterns. The approach is general and thus applicable to other types of neural data beyond multiple spike trains, such as EEG events or imaging signals from multiple locations. We have recently applied this method to quantify memory traces of sequential experience in the rodent hippocampus during slow wave sleep.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3