Detecting spatiotemporal firing patterns among simultaneously recorded single neurons

Author:

Abeles M.1,Gerstein G. L.1

Affiliation:

1. Department of Physiology, School of Medicine, Hebrew University,Jerusalem, Israel.

Abstract

1. A particular firing pattern among simultaneously observed neurons represents a particular sequence of activity. If any multineuron pattern repeats significantly more than expected by chance, we may be observing a repeated state of a neural assembly as it processes similar units of information. 2. We present here an algorithm that rapidly finds all single or multineuron patterns that repeat two or more times within a block of data, as well as equations for calculating the number of patterns of given length and repetition that would be expected. The complexity of patterns for which it is practical to compute expected numbers is three to six spikes (inclusive). 3. Confidence limits are based on these expected numbers of patterns, so that is possible to identify groups of patterns that are worthy of further analysis. 4. These methods are tested against simulated multineuron data that has various types of known nonstationarities, with good agreement between observed and expected values. 5. Application to real spike trains shows a large excess of observed repeating patterns, of which some, but not all, are shown to be due to bursts of high frequency firing. 6. It should be possible to apply the new method as a filter in real time in order to search for an association between repeated pattern events and externally observable events (stimulus, behavior, etc.). Any repeated pattern events which cannot be so associated may represent a new indicator of internal events in the nervous system.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 287 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3