Fever and sickness behavior during an opportunistic infection in a free-living antelope, the greater kudu (Tragelaphus strepsiceros)

Author:

Hetem Robyn S.,Mitchell Duncan,Maloney Shane K.,Meyer Leith C. R.,Fick Linda G.,Kerley Graham I. H.,Fuller Andrea

Abstract

To study their thermal responses to climatic stress, we implanted seven greater kudu ( Tragelaphus strepsiceros) with intra-abdominal, brain, carotid, and subcutaneous temperature data loggers, as well as an activity logger. Each animal was also equipped with a collar holding a miniature black globe thermometer, which we used to assess thermoregulatory behavior. The kudu ranged freely within succulent thicket vegetation of the Eastern Cape Province, South Africa. The kudu spontaneously developed a bacterial pneumonia and consequent fever that lasted between 6 and 10 days. The fever was characterized by a significant increase in mean 24-h abdominal temperature from 38.9 ± 0.2°C to 40.2 ± 0.4°C (means ± SD, t6 = 11.01, P < 0.0001), although the amplitude of body temperature rhythm remained unchanged ( t6 = 1.18, P = 0.28). Six of the kudu chose warmer microclimates during the fever than when afebrile ( P < 0.0001). Despite the selection of a warmer environment, on the first day of fever, the abdominal-subcutaneous temperature difference was significantly higher than on afebrile days ( t5 = 3.06, P = 0.028), indicating vasoconstriction. Some kudu displayed increased frequency of selective brain cooling during the fever, which would have inhibited evaporative heat loss and increased febrile body temperatures, without increasing the metabolic maintenance costs of high body temperatures. Average daily activity during the fever decreased to 60% of afebrile activity ( t6 = 3.46, P = 0.014). We therefore have recorded quantitative evidence for autonomic and behavioral fever, as well as sickness behavior, in the form of decreased activity, in a free-living ungulate species.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3