Pathogen transmission modes determine contact network structure, altering other pathogen characteristics

Author:

Collier Melissa1ORCID,Albery Gregory F.12ORCID,McDonald Grant C.3,Bansal Shweta1ORCID

Affiliation:

1. Department of Biology, Georgetown University, Washington, DC, USA

2. Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

3. Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary

Abstract

Pathogen traits can vary greatly and heavily impact the ability of a pathogen to persist in a population. Although this variation is fundamental to disease ecology, little is known about the evolutionary pressures that drive these differences, particularly where they interact with host behaviour. We hypothesized that host behaviours relevant to different transmission routes give rise to differences in contact network structure, constraining the space over which pathogen traits can evolve to maximize fitness. Our analysis of 232 contact networks across mammals, birds, reptiles, amphibians, arthropods, fish and molluscs found that contact network topology varies by contact type, most notably in networks that are representative of fluid-exchange transmission. Using infectious disease model simulations, we showed that these differences in network structure suggest pathogens transmitted through fluid-exchange contact types will need traits associated with high transmissibility to successfully proliferate, compared to pathogens that transmit through other types of contact. These findings were supported through a review of known traits of pathogens that transmit in humans. Our work demonstrates that contact network structure may drive the evolution of compensatory pathogen traits according to transmission strategy, providing essential context for understanding pathogen evolution and ecology.

Funder

Morris Animal Foundation

National Science Foundation

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Reference70 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3