Thermal and behavioural responses of moose to chemical immobilisation from a helicopter

Author:

Græsli Anne Randi,Thiel Alexandra,Beumer Larissa T.,Fuchs Boris,Stenbacka Fredrik,Neumann Wiebke,Singh Navinder J.,Ericsson Göran,Arnemo Jon M.,Evans Alina L.

Abstract

AbstractInstrumentation and sample collection for wildlife research and management may require chemical immobilisation of animals, which may entail physiological and behavioural effects on them. It is therefore important to evaluate the immobilisation protocols to reduce the risk of mortality and morbidity of the handled animals and their populations. Using a multi-sensor approach, we assessed the short-term (< 10 days) thermal and behavioural responses of 10 adult female moose (Alces alces) equipped with ruminal temperature loggers and GPS collars with accelerometers to helicopter-based chemical immobilisations. We investigated the body temperature (Tb), movement rates, and resting time before, during, and after recapture. Chemical immobilisations on average increased maximum Tb by 0.71 °C during the capture day, and imposed longer travel distances during the capture day and the two following days (3.8 and 1.8 km, respectively), compared to a 10-day reference period before the immobilisation. The probability of resting was 5–6% lower on the capture day and the two following days compared to the reference period, and females with offspring had a higher probability of resting than females without. Maximum Tb, movement rate, and resting time returned to pre-capture levels on an individual level 2 h, 3 days, and 3 days after the immobilisation, respectively. Chemical immobilisation of moose from a helicopter increases the energy expenditure deduced through movement and Tb rise lasting for hours to days. Ecological and physiological studies aimed at inferring general patterns may encounter bias if including sensor and tracking data from tagged animals without accounting for potential post-capture effects.

Funder

Høgskolen i Innlandet

Inland Norway University Of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3