Directional sensitivity of dynamic cerebral autoregulation in squat-stand maneuvers

Author:

Panerai Ronney B.12ORCID,Barnes Sam C.1,Nath Mintu12,Ball Naomi1,Robinson Thompson G.12,Haunton Victoria J.12

Affiliation:

1. Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom

2. National Institute for Health Research, Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom

Abstract

Dynamic cerebral autoregulation (CA), the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (BP), is usually modeled as a linear mechanism. We tested the hypothesis that dynamic CA can display nonlinear behavior resulting from differential efficiency dependent on the direction of BP changes. Cerebral blood velocity (CBV) (transcranial Doppler), heart rate (HR) (three-lead ECG), continuous BP (Finometer), and end-tidal CO2 (capnograph) were measured in 10 healthy young subjects during 15 squat-stand maneuvers (SSM) with a frequency of 0.05 Hz. The protocol was repeated with a median (interquartile range) of 44 (35–64) days apart. Dynamic CA was assessed with the autoregulation index (ARI) obtained from CBV step responses estimated with an autoregressive moving-average model. Mean BP, HR, and CBV were different (all P < 0.001) between squat and stand, regardless of visits. ARI showed a strong interaction ( P < 0.001) of SSM with the progression of transients; in general, the mean ARI was higher for the squat phase compared with standing. The changes in ARI were partially explained by concomitant changes in CBV ( P = 0.023) and pulse pressure ( P < 0.001), but there was no evidence that ARI differed between visits ( P = 0.277). These results demonstrate that dynamic CA is dependent on the direction of BP change, but further work is needed to confirm if this finding can be generalized to other physiological conditions and also to assess its dependency on age, sex and pathology.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3