Author:
Bercik Premysl,Verdú Elena F.,Foster Jane A.,Lu Jun,Scharringa Angela,Kean Iain,Wang Lu,Blennerhassett Patricia,Collins Stephen M.
Abstract
Bacterial infection can trigger the development of functional GI disease. Here, we investigate the role of the gut-brain axis in gastric dysfunction during and after chronic H. pylori infection. Control and chronically H. pylori-infected Balb/c mice were studied before and 2 mo after bacterial eradication. Gastric motility and emptying were investigated using videofluoroscopy image analysis. Gastric mechanical viscerosensitivity was assessed by cardioautonomic responses to distension. Feeding patterns were recorded by a computer-assisted system. Plasma leptin, ghrelin, and CCK levels were measured using ELISA. IL-1β, TNF-α, proopiomelanocortin (POMC), and neuropeptide Y mRNAs were assessed by in situ hybridizations on frozen brain sections. Gastric inflammation was assessed by histology and immunohistochemistry. As shown previously, H. pylori-infected mice ate more frequently than controls but consumed less food per bout, maintaining normal body weight. Abnormal feeding behavior was accompanied by elevated plasma ghrelin and postprandial CCK, higher TNF-α (median eminence), and lower POMC (arcuate nucleus) mRNA. Infected mice displayed delayed gastric emptying and visceral hypersensitivity. Eradication therapy normalized gastric emptying and improved gastric sensitivity but had no effect on eating behavior. This was accompanied by persistently increased TNF-α in the brain and gastric CD3+ T-cell counts. In conclusion, chronic H. pylori infection in mice alters gastric emptying and mechanosensitivity, which improve after bacterial eradication. A feeding pattern reminiscent of early satiety persists after H. pylori eradication and is accompanied by increased TNF-α in the brain. The results support a role for altered gut-brain pathways in the maintenance of postinfective gut dysfunction.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Reference38 articles.
1. Evidence for the involvement of TNF and NF-?B in hippocampal synaptic plasticity
2. Arras M, Rettich A, Cinelli P, Kasermann HP, Burki K. Assessment of post-laparotomy pain in laboratory mice by telemetric recording of heart rate and heart rate variability [Online]. BMC Vet Res 2: 16, 2007.
3. Bennink RJ, De Jonge WJ, Symonds EL, van den Wijngaard RM, Spijkerboer AL, Benninga MA, Boeckxstaens GE. Validation of gastric-emptying scintigraphy of solids and liquids in mice using dedicated animal pinhole scintigraphy. J Nucl Med 44: 1099–104, 2003.
4. Immune-mediated neural dysfunction in a murine model of chronic Helicobacter pylori infection
5. Visceral hyperalgesia and intestinal dysmotility in a mouse model of postinfective gut dysfunction
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献