Optimizing prediction models for pancreatic fistula after pancreatectomy: Current status and future perspectives

Author:

Yang Feng,Windsor John A,Fu De-Liang

Abstract

Postoperative pancreatic fistula (POPF) is a frequent complication after pancreatectomy, leading to increased morbidity and mortality. Optimizing prediction models for POPF has emerged as a critical focus in surgical research. Although over sixty models following pancreaticoduodenectomy, predominantly reliant on a variety of clinical, surgical, and radiological parameters, have been documented, their predictive accuracy remains suboptimal in external validation and across diverse populations. As models after distal pancreatectomy continue to be progressively reported, their external validation is eagerly anticipated. Conversely, POPF prediction after central pancreatectomy is in its nascent stage, warranting urgent need for further development and validation. The potential of machine learning and big data analytics offers promising prospects for enhancing the accuracy of prediction models by incorporating an extensive array of variables and optimizing algorithm performance. Moreover, there is potential for the development of personalized prediction models based on patient- or pancreas-specific factors and postoperative serum or drain fluid biomarkers to improve accuracy in identifying individuals at risk of POPF. In the future, prospective multicenter studies and the integration of novel imaging technologies, such as artificial intelligence-based radiomics, may further refine predictive models. Addressing these issues is anticipated to revolutionize risk stratification, clinical decision-making, and postoperative management in patients undergoing pancreatectomy.

Publisher

Baishideng Publishing Group Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3