Food demand and meal size in mice with single or combined disruption of melanocortin type 3 and 4 receptors

Author:

Atalayer Deniz1,Robertson Kimberly L.1,Haskell-Luevano Carrie1,Andreasen Amy1,Rowland Neil E.1

Affiliation:

1. Departments of Psychology and Pharmacodynamics, University of Florida, Gainesville, Florida

Abstract

Mice with homozygous genetic disruption of the melanocortin-4 receptor gene (MC4R−/−) are known to be hyperphagic and become obese, while those with disruption of the melanocortin-3 receptor gene (MC3R−/−) do not become markedly obese. The contribution of MC3R signaling in energy homeostasis remains little studied. In the present work, we compare MC3R−/− mice with wild-type (WT), MC4R−/−, and mice bearing disruption of both genes (double knockout, DKO) on select feeding and neuroanatomical dimensions. DKO mice were significantly more obese than MC4R−/−, whereas MC3R−/− weighed the same as WT. In a food demand protocol, DKO and MC4R−/− were hyperphagic at low unit costs for food, due primarily to increased meal size. However, at higher costs, their intake dropped below that of WT and MC3R−/−, indicating increased elasticity of food demand. To determine whether this higher elasticity was due to either the genotype or to the obese phenotype, the same food demand protocol was conducted in dietary obese C57BL6 mice. They showed similar elasticity to lean mice, suggesting that the effect is of genotypic origin. To assess whether the increased meal size in MC4R−/− and DKO might be due to reduced CCK signaling, we examined the acute anorectic effect of peripherally administered CCK and subsequently the induction of c-Fos immunoreactivity in select brain regions. The anorectic effect of CCK was comparable in MC4R−/− , DKO, and WT, but it was unexpectedly absent in MC3R−/−. CCK-induced c-Fos was lower in the paraventricular nucleus in MC3R−/− than the other genotypes. These data are discussed in terms of demand functions for food intake, MC receptors involved in feeding, and their relation to actions of gut hormones, such as CCK, and to obesity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3