Novel plasminogen activator inhibitor-1-derived peptide protects against impairment of cerebrovasodilation after photothrombosis through inhibition of JNK MAPK

Author:

Armstead William M.12,Riley John1,Kiessling J. Willis1,Cines Douglas B.3,Higazi Abd Al-Roof34

Affiliation:

1. Departments of 1Anesthesiology and Critical Care,

2. Pharmacology, and

3. Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; and

4. Department of Clinical Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel

Abstract

The sole FDA-approved treatment for acute stroke is recombinant tissue-type plasminogen activator (rtPA). However, rtPA aggravates the impairment of cerebrovasodilation induced by global hypoxia/ischemia; this impairment is attenuated by the preinjury treatment with the plasminogen activator inhibitor derivative EEIIMD. MAPK (a family of kinases, p38, and JNK) is upregulated after cerebral ischemia. In this study, we determined whether the novel plasminogen activator inhibitor-derived peptide, Ac-RMAPEEIIMDRPFLYVVR-amide, (PAI-1-DP) given 30 min before or 2 h after, focal central nervous system injury induced by photothrombosis would preserve responses to cerebrovasodilators and the role of p38 and JNK MAPK in such effects. Cerebrospinal fluid JNK and p38 levels were elevated by photothrombotic injury, an effect potentiated by rtPA. Cerebrovasodilation was blunted by photothrombosis and reversed to vasoconstriction by rtPA but restored to dilation by PAI-1-DP pre- and posttreatment. PAI-1-DP blocked JNK, but preserved p38 MAPK upregulation after photothrombosis. The JNK MAPK antagonist SP600125 prevented, and the p38 antagonist SB203580 potentiated, impaired cerebrovasodilation after photothrombosis. These data indicate that rtPA impairs cerebrovasodilation after injury by activating JNK, while p38 MAPK is protective, and that the novel peptide PAI-1-DP protects by inhibiting activation of JNK by rtPA. JNK MAPK inhibitors, including PAI-1-DP, may offer a novel approach to increase the benefit-to-risk ratio of thrombolytic therapy and enable its use in central nervous system ischemic disorders.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3