Transcranial photoacoustic characterization of neurovascular physiology during early-stage photothrombotic stroke in neonatal piglets in vivo

Author:

Kang JeeunORCID,Liu XiuyunORCID,Cao Suyi,Zeiler Steven R,Graham Ernest M,Boctor Emad M,Koehler Raymond C

Abstract

Abstract Objective: Perinatal ischemic stroke is estimated to occur in 1/2300–1/5000 live births, but early differential diagnosis from global hypoxia-ischemia is often difficult. In this study, we tested the ability of a hand-held transcranial photoacoustic (PA) imaging probe to non-invasively detect a focal photothrombotic stroke (PTS) within 2 h of stroke onset in a gyrencephalic piglet brain. Approach: About 17 stroke lesions of approximately 1 cm2 area were introduced randomly in anterior or posterior cortex via the light/dye PTS technique in anesthetized neonatal piglets (n = 11). The contralateral non-ischemic region served as control tissue for discrimination contrast for the PA hemoglobin metrics: oxygen saturation, total hemoglobin (tHb), and individual quantities of oxygenated and deoxygenated hemoglobin (HbO2 and HbR). Main results: The PA-derived tissue oxygen saturation at 2 h yielded a significant separation between control and affected regions-of-interest (p < 0.0001), which were well matched with 24 h post-stroke cerebral infarction confirmed in the triphenyltetrazolium chloride-stained image. The quantity of HbO2 also displayed a significant contrast (p = 0.021), whereas tHb and HbR did not. The analysis on receiver operating characteristic curves and multivariate data analysis also agreed with the results above. Significance: This study shows that a hand-held transcranial PA neuroimaging device can detect a regional thrombotic stroke in the cerebral cortex of a neonatal piglet. In particular, we conclude that the oxygen saturation metric can be used alone to identify regional stroke lesions. The lack of change in tHb may be related to arbitrary hand-held imaging configuration and/or entrapment of red blood cells within the thrombotic stroke.

Funder

Maryland Innovation Initiative, TEDCO

Louis B. Thalheimer Fund for Translational Research

NIH

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3