Obese adipose tissue modulates proinflammatory responses of mouse airway epithelial cells

Author:

Ather Jennifer L.1,Van Der Vliet Katherine E.1,Mank Madeleine M.1,Reed Leah F.1,Dixon Anne E.1,Poynter Matthew E.1ORCID

Affiliation:

1. Division of Pulmonary Disease and Critical Care, Vermont Lung Center, Department of Medicine, The University of Vermont, Burlington, Vermont

Abstract

Although recognized as an important endocrine organ, little is known about the mechanisms through which adipose tissue can regulate inflammatory responses in distant tissues, such as lung that are affected by obesity. To explore potential mechanisms, male C57BL/6J mice were provided either high-fat diet, low-fat diet, or were provided a high-fat diet then switched to the low-fat diet to promote weight loss. Visceral adipocytes were then cultured in vitro to generate conditioned media (CM) that was used to treat both primary (mouse tracheal epithelial cells; MTECs) and immortalized (mouse-transformed club cells; MTCCs) airway epithelial cells. Adiponectin levels were greatly depressed in the CM from both obese and diet-switched adipocytes relative to mice continually fed the low-fat diet. MTECs from mice with obesity secreted higher baseline levels of inflammatory cytokines than MTECs from lean or diet-switched mice. MTECs treated with obese adipocyte CM increased their secretion of these cytokines compared with MTECs treated with lean CM. Diet-switched CM modestly decreased the production of cytokines compared with obese CM, and these effects were recapitulated when the CM was used to treat MTCCs. Adipose stromal vascular cells from mice with obesity expressed genes consistent with an M1 macrophage phenotype and decreased eosinophil abundance compared with lean stromal vascular fraction, a profile that persisted in the lean diet-switched mice despite substantial weight loss. Soluble factors secreted from obese adipocytes exert a proinflammatory effect on airway epithelial cells, and these alterations are attenuated by diet-induced weight loss, which could have implications for the airway dysfunction related to obese asthma and its mitigation by weight loss.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3