Diet-induced obesity worsens allergen-induced type 2/type 17 inflammation in airways by enhancing DUOX1 activation

Author:

Habibovic Aida1,Hristova Milena1,Morris Carolyn R.12,Lin Miao-Chong Joy1ORCID,Cruz Litiele C.1,Ather Jennifer L.2,Geiszt Miklós3,Anathy Vikas1ORCID,Janssen-Heininger Yvonne M. W.1ORCID,Poynter Matthew E.2ORCID,Dixon Anne E.2,van der Vliet Albert1ORCID

Affiliation:

1. Departments of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont

2. Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont

3. Department of Physiology and “Lendület” Peroxidase Enzyme Research Group, Semmelweis University, Budapest, Hungary

Abstract

More than 50% of people with asthma in the United States are obese, and obesity often worsens symptoms of allergic asthma and impairs response to treatment. Based on previously established roles of the epithelial NADPH oxidase DUOX1 in allergic airway inflammation, we addressed the potential involvement of DUOX1 in altered allergic inflammation in the context of obesity. Intranasal house dust mite (HDM) allergen challenge of subjects with allergic asthma induced rapid secretion of IL-33, then IL-13, into the nasal lumen, responses that were significantly enhanced in obese asthmatic subjects (BMI >30). Induction of diet-induced obesity (DIO) in mice by high-fat diet (HFD) feeding similarly enhanced acute airway responses to intranasal HDM challenge, particularly with respect to secretion of IL-33 and type 2/type 3 cytokines, and this was associated with enhanced epithelial DUOX1 expression and was avoided in DUOX1-deficient mice. DIO also enhanced DUOX1-dependent features of chronic HDM-induced allergic inflammation. Although DUOX1 did not affect overall weight gain by HFD feeding, it contributed to glucose intolerance, suggesting a role in glucose metabolism. However, glucose intolerance induced by short-term HFD feeding, in the absence of adiposity, was not sufficient to alter HDM-induced acute airway responses. DIO was associated with enhanced presence of the adipokine leptin in the airways, and leptin enhanced DUOX1-dependent IL-13 and mucin production in airway epithelial cells. In conclusion, augmented inflammatory airway responses to HDM in obesity are associated with increases in airway epithelial DUOX1, and by increased airway epithelial leptin signaling.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3