Muscle angiogenic growth factor gene responses to exercise in chronic renal failure

Author:

Wagner Peter D.1,Masanés Ferran2,Wagner Harrieth1,Sala Ernest3,Miró Oscar2,Campistol J. M.4,Marrades Ramon M.3,Casademont Jordi2,Torregrosa V.4,Roca Josep3

Affiliation:

1. Department of Medicine, Section of Physiology, University of California San Diego, La Jolla, California 92093;

2. Muscle Research Unit,

3. Servei de Pneumologia i Allèrgia Respiratòria, and

4. Unitat de Trasplantament Renal, Departament de Medicina, Institut d'Investigacions Biomèdiques Pi i Sunyer, Hospital Clı́nic, 08306 Barcelona, Spain

Abstract

Patients with chronic renal failure (CRF) have impaired exercise capacity even after erythropoietin treatment. We recently showed that although this is explained in part by reduced convective O2 delivery to muscles, there is also an impairment of O2 transport from muscle capillaries to the mitochondria. Given the importance of the capillary surface area for capillary mitochondrial O2 transport and reports of reduced capillarity in CRF, we hypothesized that the angiogenic gene response to exercise is impaired in such patients. Six patients with CRF and six control subjects matched for age, size, and sedentary lifestyle exercised on a single occasion for 1 h at similar work intensities averaging 50% of maximal capacity. Exercise was confined to the knee extensors of a single leg by means of a specially designed leg-kick ergometer. A percutaneous biopsy of the quadriceps was taken within 30 min of cessation of exercise and compared with a similar biopsy done at different times without any prior exercise for 24 h. Conventional Northern blots were prepared and probed for vascular endothelial growth factor (VEGF; the major putative angiogenic growth factor for muscle), basic fibroblast growth factor (bFGF), and transforming growth factor (TGF)-β1. Data during both rest and exercise were successfully obtained in four subjects of each group. We also assessed muscle capillarity and mitochondrial oxidative capacity to relate to these changes. Mitochondrial oxidative capacity was normal, whereas capillary number per fiber was 12% lower than in normal subjects. VEGF mRNA abundance was increased after exercise by about one order of magnitude, with no reduction in response in CRF. For bFGF and TGF-β1, exercise elicited no response in either group. Reduced muscle capillarity in CRF does not, therefore, stem from reduced transcription of VEGF. To the extent that VEGF is important to exercise-induced angiogenesis in muscle, we suspect a posttranscriptional aberration in this response occurs in CRF to explain reduced capillarity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3