Molecular changes in skeletal muscle in chronic kidney disease: A systematic review

Author:

Wong Limy12ORCID,Kenny Rachel1,Howard Jennifer2,McMahon Lawrence P.12

Affiliation:

1. Department of Renal Medicine Monash University Eastern Health Clinical School Box Hill Australia

2. Department of Renal Medicine Eastern Health Box Hill Australia

Abstract

AbstractBackgroundLoss of skeletal muscle mass is prevalent among patients affected by chronic kidney disease (CKD). It is associated with significant morbidity and mortality. The underlying molecular pathogenesis has yet to be fully understood. The aim of this systematic review is to summarize the current evidence on molecular changes in the skeletal muscle of humans and rodents with CKD and to assess the strength of such evidence.MethodsThe PubMed and EMBASE databases were searched using three main themes: messenger ribonucleic acid/protein/microRNA expression, skeletal muscle and CKD. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta‐Analyses (PRISMA) standards.ResultsA total of 98 studies were included in the systematic review, comprising 26 prospective human clinical studies, four human and rodent studies, and 68 rodent‐only studies (32 mouse and 36 rat models respectively). The sample sizes of human studies were largely small (40% of studies had ≤20 participants). Qualitative polymerase chain reaction (qPCR) was the most commonly used method for gene expression and none of the studies fulfilled the Minimum Information for Publication of qPCR Experiments criteria for quality assessment. Majority of the studies investigated only a few genes or a specific signalling pathway. FBXO32, TRIM63, MSTN, IL6, TNF and IGF1 were the most investigated genes. The identified differentially expressed genes and proteins belonged to eight major pathways, including apoptosis, autophagy, inflammation, insulin/insulin‐like growth factor 1 signalling, lipid metabolism, mitochondrial function, muscle cell growth and differentiation, and protein degradation, similar to other chronic disease states.ConclusionsThe current evidence regarding molecular alterations in the skeletal muscle in CKD is largely derived from small and heterogenous studies. Markedly similar modifications in the major biological pathways between CKD and other chronic diseases supports shared deleterious molecular mechanisms producing muscle atrophy, irrespective of the underlying specific disease.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3