Fatigue and recovery of dynamic and steady-state performance in frog skeletal muscle

Author:

Syme Douglas A.1,Tonks Dillon M.1

Affiliation:

1. Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada

Abstract

Muscle fatigue reflects alterations of both activation and cross-bridge function, which will have markedly different affects on steady-state vs. dynamic performance. Such differences offer insight into the specific origins of fatigue, its mechanical manifestation, and its consequences for animal movement. These were inferred using dynamic contractions (twitches and cyclic work as might occur during locomotion) and steady-state performance with maximal, sustained activation (tetani, stiffness, and isokinetic force) during fatigue and then recovery of frog ( Rana pipiens) anterior tibialis muscle. Stiffness remained unaltered during early fatigue of force and then declined only 25% as force dropped 50%, suggesting a decline with fatigue in first the force-generating ability and then the number of cross bridges. The relationship between stiffness and force was different during fatigue and recovery; thus the number of cross bridges and force per cross bridge are not intimately linked. Twitch duration increased with fatigue and then recovered, with trajectories that were remarkably similar to and linear with changes in tetanic force, perhaps belying a common mechanism. Twitch force increased and then returned to resting levels during fatigue, reflecting a slowing of activation kinetics and a decline in cross-bridge number and force. Net cyclic work fatigued to the degree of becoming negative when tetanic force had declined only 15%. Steady-state isokinetic force (i.e., shortening work) declined by 75%, while cyclic shortening work declined only 30%. Slowed activation kinetics were again responsible, augmenting cyclic shortening work but greatly augmenting lengthening work (reducing net work). Steady-state measures can thus seriously mislead regarding muscle performance in an animal during fatigue.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3