How well do muscle biomechanics predict whole-animal locomotor performance? The role of Ca2+ handling

Author:

Seebacher Frank1,Pollard Samuel R.2,James Rob S.2

Affiliation:

1. Integrative Physiology, School of Biological Sciences A08, University of Sydney, NSW 2006, Australia

2. Department of Biomolecular and Sport Sciences, Coventry University, Coventry CV1 5FB, UK

Abstract

SUMMARY It is important to determine the enabling mechanisms that underlie locomotor performance to explain the evolutionary patterns and ecological success of animals. Our aim was to determine the extent to which calcium (Ca2+) handling dynamics modulate the contractile properties of isolated skeletal muscle, and whether the effects of changing Ca2+ handling dynamics in skeletal muscle are paralleled by changes in whole-animal sprint and sustained swimming performance. Carp (Cyprinus carpio) increased swimming speed by concomitant increases in tail-beat amplitude and frequency. Reducing Ca2+ release from the sarcoplasmic reticulum (SR) by blocking ryanodine receptors with dantrolene decreased isolated peak muscle force and was paralleled by a decrease in tail-beat frequency and whole-animal sprint performance. An increase in fatigue resistance following dantrolene treatment may reflect the reduced depletion of Ca2+ stores in the SR associated with lower ryanodine receptor (RyR) activity. Blocking RyRs may be detrimental by reducing force production and beneficial by reducing SR Ca2+ depletion so that there was no net effect on critical sustained swimming speed (Ucrit). In isolated muscle, there was no negative effect on force production of blocking Ca2+ release via dihydropyridine receptors (DHPRs) with nifedipine. Nifedipine decreased fatigue resistance of isolated muscle, which was paralleled by decreases in tail-beat frequency and Ucrit. However, sprint performance also decreased with DHPR inhibition, which may indicate a role in muscle contraction of the Ca2+ released by DHPR into the myocyte. Inhibiting sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity with thapsigargin decreased fatigue resistance, suggesting that SERCA activity is important in avoiding Ca2+ store depletion and fatigue. We have shown that different molecular mechanisms modulate the same muscle and whole-animal traits, which provides an explanatory model for the observed variations in locomotor performance within and between species.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3