Muscle power production during intermittent swimming in bluegill sunfish

Author:

Coughlin David J.1ORCID,Santarcangelo Krista1,Wilcock Emma1,Tum Suden Daniel J.1,Ellerby David J.2

Affiliation:

1. Department of Biology Widener University Chester Pennsylvania USA

2. Department of Biology Wellesley College Massachusetts USA

Abstract

AbstractLocomotion is essential for the survival and fitness of animals. Fishes have evolved a variety of mechanisms to minimize the cost of transport. For instance, bluegill sunfish have recently been shown to employ intermittent swimming in nature and in laboratory conditions. We focused on the functional properties of the power‐producing muscles that generate propulsive forces in bluegill to understand the implications of intermittent activity. We used in vivo aerobic or red muscle activity parameters (e.g., oscillation frequency and onset time and duration of activation) in muscle physiology experiments to examine muscle power output during intermittent versus steady swimming in these fish. Intermittent propulsion involves swimming at relatively slow speeds with short propulsive bursts alternating with gliding episodes. The propulsive bursts are at higher oscillation frequencies than would be predicted for a given average swimming speed with constant propulsion. The work‐loop muscle physiology experiments with red muscle demonstrated that intermittent activity allows muscle to produce sufficient power for swimming compared with imposed steady swimming conditions. Further, the intermittent muscle activity in vitro reduces fatigue relative to steady or continuous activity. This work supports the fixed‐gear hypothesis that suggests that there are preferred oscillation frequencies that optimize efficiency in muscle use and minimize cost of transport.

Funder

National Science Foundation

Publisher

Wiley

Subject

Genetics,Molecular Biology,Animal Science and Zoology,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3