Effect of stimulation frequency on force, power and fatigue of isolated mouse extensor digitorum longus muscle

Author:

Shelley Sharn P.1ORCID,James Rob S.1,Eustace Steven J.1,Eyre Emma1,Tallis Jason1ORCID

Affiliation:

1. Centre for Sport, Exercise and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK

Abstract

ABSTRACT This study examined the effect of stimulation frequency (140, 200, 230 and 260 Hz) on isometric force, work loop (WL) power and the fatigue resistance of extensor digitorum longus (EDL) muscle (n=32), isolated from 8- to 10-week-old CD-1 female mice. Stimulation frequency had significant effects on isometric properties of isolated mouse EDL, whereby increasing stimulation frequency evoked increased isometric force, quicker activation and prolonged relaxation (P<0.047) up to 230 Hz and above; thereafter, force and activation did not differ (P>0.137). Increasing stimulation frequency increased maximal WL power output (P<0.001; 140 Hz, 71.3±3.5; 200 Hz, 105.4±4.1; 230 Hz, 115.5±4.1; 260 Hz, 121.1±4.1 W kg−1), but resulted in significantly quicker rates of fatigue during consecutive WLs (P<0.004). WL shapes indicate impaired muscle relaxation at the end of shortening and subsequent increased negative work appeared to contribute to fatigue at 230 and 260 Hz, but not at lower stimulation frequencies. Cumulative work was unaffected by stimulation frequency, except at the start of the fatigue protocol, where 230 and 260 Hz produced more work than 140 Hz (P<0.039). We demonstrate that stimulation frequency affects force, power and fatigue, but these effects are not uniform between different assessments of contractile performance. Therefore, future work examining the contractile properties of isolated skeletal muscle should consider increasing the stimulation frequency beyond that needed for maximal force when examining maximal power but should utilise a sub-maximal stimulation frequency for fatigue assessments to avoid a high degree of negative work atypical of in vivo function.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3