The effect of plasma osmolality and baroreceptor loading status on postexercise heat loss responses

Author:

Paull Gabrielle1,Dervis Sheila1,Barrera-Ramirez Juliana1,McGinn Ryan1,Haqani Baies1,Flouris Andreas D.12,Kenny Glen P.1

Affiliation:

1. Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and

2. FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece

Abstract

We examined the separate and combined effects of plasma osmolality and baroreceptor loading status on postexercise heat loss responses. Nine young males completed a 45-min treadmill exercise protocol at 58 ± 2% V̇o2 peak, followed by a 60-min recovery. On separate days, participants received 0.9% NaCl (ISO), 3.0% NaCl (HYP), or no infusion (natural recovery) throughout exercise. In two additional sessions (no infusion), lower-body negative (LBNP) or positive (LBPP) pressure was applied throughout the final 45 min of recovery. Local sweat rate (LSR; ventilated capsule: chest, forearm, upper back, forehead) and skin blood flow (SkBF; laser-Doppler flowmetry: forearm, upper back) were continuously measured. During HYP, upper back LSR was attenuated from end-exercise to 10 min of recovery by ∼0.35 ± 0.10 mg·min−1·cm−2 and during the last 20 min of recovery by ∼0.13 ± 0.03 mg·min−1·cm−2, while chest LSR was lower by 0.18 ± 0.06 mg·min−1·cm−2 at 50 min of recovery compared with natural recovery (all P < 0.05). Forearm and forehead LSRs were not affected by plasma hyperosmolality during HYP (all P > 0.28), which suggests regional differences in the osmotic modulation of postexercise LSR. Furthermore, LBPP application attenuated LSR by ∼0.07–0.28 mg·min−1·cm−2 during the last 30 min of recovery at all sites except the forehead compared with natural recovery (all P < 0.05). Relative to natural recovery, forearm and upper back SkBF were elevated during LBPP, ISO, and HYP by ∼6–10% by the end of recovery (all P < 0.05). We conclude that 1) hyperosmolality attenuates postexercise sweating heterogeneously among skin regions, and 2) baroreceptor loading modulates postexercise SkBF independently of changes in plasma osmolality without regional differences.

Funder

Natural Sciences and Engineering Research Council Discovery Grant

Discovery Grants Program - Accelerator Supplements

Leaders Opportunity Fund from the Canada Foundation for Innovation

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3