Affiliation:
1. Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; and
2. FAME Laboratory, Department of Exercise Science, University of Thessaly, Trikala, Greece
Abstract
We examined the separate and combined effects of plasma osmolality and baroreceptor loading status on postexercise heat loss responses. Nine young males completed a 45-min treadmill exercise protocol at 58 ± 2% V̇o2 peak, followed by a 60-min recovery. On separate days, participants received 0.9% NaCl (ISO), 3.0% NaCl (HYP), or no infusion (natural recovery) throughout exercise. In two additional sessions (no infusion), lower-body negative (LBNP) or positive (LBPP) pressure was applied throughout the final 45 min of recovery. Local sweat rate (LSR; ventilated capsule: chest, forearm, upper back, forehead) and skin blood flow (SkBF; laser-Doppler flowmetry: forearm, upper back) were continuously measured. During HYP, upper back LSR was attenuated from end-exercise to 10 min of recovery by ∼0.35 ± 0.10 mg·min−1·cm−2 and during the last 20 min of recovery by ∼0.13 ± 0.03 mg·min−1·cm−2, while chest LSR was lower by 0.18 ± 0.06 mg·min−1·cm−2 at 50 min of recovery compared with natural recovery (all P < 0.05). Forearm and forehead LSRs were not affected by plasma hyperosmolality during HYP (all P > 0.28), which suggests regional differences in the osmotic modulation of postexercise LSR. Furthermore, LBPP application attenuated LSR by ∼0.07–0.28 mg·min−1·cm−2 during the last 30 min of recovery at all sites except the forehead compared with natural recovery (all P < 0.05). Relative to natural recovery, forearm and upper back SkBF were elevated during LBPP, ISO, and HYP by ∼6–10% by the end of recovery (all P < 0.05). We conclude that 1) hyperosmolality attenuates postexercise sweating heterogeneously among skin regions, and 2) baroreceptor loading modulates postexercise SkBF independently of changes in plasma osmolality without regional differences.
Funder
Natural Sciences and Engineering Research Council Discovery Grant
Discovery Grants Program - Accelerator Supplements
Leaders Opportunity Fund from the Canada Foundation for Innovation
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献