Perfusate cytochrome c reduction in isolated rabbit lungs

Author:

Bongard R. D.1,Roerig D. L.1,Johnston M. R.1,Dawson C. A.1

Affiliation:

1. Department of Physiology, Medical College of Wisconsin, Milwaukee 53226.

Abstract

The reduction of ferricytochrome c within the perfusate in isolated lung perfusion systems has been demonstrated previously. We carried out the present study 1) to determine what reducing agents might be responsible for this reduction and 2) to determine whether the cytochrome c (cyto c) reduction within the recirculating perfusion system can be accounted for by relatively stable reducing agents released into the perfusate or whether some of the reduction is dependent on short-lived agents and/or proximity to the source of the agents within the lungs. Experiments were carried out with the use of isolated rabbit lungs perfused for 1 h in a recirculating system. In one group of experiments, ferricytochrome c was included in the recirculating perfusion system. In another group, the cyto c was added to produce the same concentration in samples after they were removed from a cyto c-free recirculating system. The recirculating cyto c was reduced at a rate of approximately 1.76 mumol/h, and approximately 22% was inhibitable by superoxide dismutase. Most of the rest could be inhibited by ascorbate oxidase within the recirculating perfusate. When the ferricytochrome c was added to the samples removed from the cyto c-free perfusion system, virtually the entire cyto c reducing capacity was inhibitable by ascorbate oxidase. Although reduced glutathione did accumulate in the recirculating perfusate, the quantity was not sufficient to have an important role in the cyto c reduction. We conclude that most of the cyto c reducing capacity within the lung perfusate could be accounted for by ascorbate released from the lungs.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of pulmonary arterial endothelial cells on duroquinone redox status;Free Radical Biology and Medicine;2004-07

2. Pulmonary reduction of an intravascular redox polymer;American Journal of Physiology-Lung Cellular and Molecular Physiology;2001-06-01

3. Nitro blue tetrazolium inhibits but does not mimic hypoxic vasoconstriction in isolated rabbit lungs;American Journal of Physiology-Lung Cellular and Molecular Physiology;1998-05-01

4. Liquid chromatographic measurement of l-ascorbic acid and d-ascorbic acid in biological samples;Journal of Chromatography B: Biomedical Sciences and Applications;1997-03

5. Reduction and accumulation of methylene blue by the lung;Journal of Applied Physiology;1994-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3