Reduction and accumulation of methylene blue by the lung

Author:

Bongard R. D.1,Krenz G. S.1,Linehan J. H.1,Roerig D. L.1,Merker M. P.1,Widell J. L.1,Dawson C. A.1

Affiliation:

1. Department of Physiology, Medical College of Wisconsin, Milwaukee 53226.

Abstract

We studied the disposition of methylene blue added to the perfusate passing through isolated perfused rabbit lungs. Experiments were carried out in a recirculating or single-pass mode, the latter with either a steady infusion or bolus injection of the dye in its blue oxidized form (MB+) or in its colorless reduced leukomethylene blue form (MBH). The recirculation experiments revealed that the dye was taken up by the lungs and that a substantial fraction (approximately 16%) of the MB+ entering the pulmonary artery was reduced before it emerged from the pulmonary veins. Sequestration of the dye by the lungs was a relatively slow process, and the blue color of the lungs at a time when there was little dye left in the perfusate suggests that much of the sequestered dye was in the oxidized form. The results from the single-pass bolus and steady infusion experiments suggest that MBH diffuses rapidly between perfusate and tissue and that it is more soluble in the tissue than in the perfusates used in the study. In this context, the concept of “solubility” includes the impact of the rapidly equilibrating associations of the dye with the perfusate albumin and tissue components. The observed characteristics of the disposition of the methylene blue within the lungs and the rapid rate of its reduction on passage through the lungs suggest that it may be useful to evaluate the possibility that changes in reduction, uptake, and/or sequestration rates may reflect alterations in the metabolic function of the lungs.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3