Nitro blue tetrazolium inhibits but does not mimic hypoxic vasoconstriction in isolated rabbit lungs

Author:

Weissmann Norbert1,Grimminger Friedrich1,Voswinckel Robert1,Conzen Jörg1,Seeger Werner1

Affiliation:

1. Department of Internal Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany

Abstract

It has been suggested that hypoxic pulmonary vasoconstriction (HPV) may mainly proceed via loss of normoxic vasodilation, forwarded by tonic O2-dependent formation of nitric oxide and superoxide (23). Both agents may stimulate guanylate cyclase, the latter via conversion to hydrogen peroxide and formation of compound I with catalase. We probed this hypothesis in perfused rabbit lungs, employing the superoxide scavengers superoxide dismutase (SOD), 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron), and nitro blue tetrazolium (NBT) and the catalase inhibitor aminotriazole (AT). NBT turned out to be a potent dose-dependent inhibitor of HPV in a concentration range of 200 nM to 1 μM, and superimposable dose-inhibition curves were obtained when lung synthesis of nitric oxide and vasodilatory prostanoids was preblocked by N G-monomethyl-l-arginine (l-NMMA) and acetylsalicylic acid (ASA). The NBT effect was specific because no inhibition in the vasoconstrictor responses to the stable thromboxane analog U-46619 and angiotensin II was observed. In contrast, SOD and Tiron were ineffective. AT exerted nonspecific inhibition of the hypoxia- and chemical vasoconstrictor-induced pressor responses. When applied under normoxic conditions, however, NBT alone or coapplied withl-NMMA or ASA, both for blockage of parallel vasodilatory pathways, did not mimic the hypoxia-induced vasoconstrictor response. In conclusion, the present study supports an important role for superoxide in the basic mechanism of HPV, but it questions the concept that loss of tonic vasorelaxation via this pathway is the underlying event in rabbit lungs. The mechanisms relating O2 tension-dependent superoxide and hydrogen peroxide generation to the vasoconstrictor event occurring in HPV remain to be further elucidated.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrogen peroxide is a critical regulator of the hypoxia-induced alterations of store-operated Ca2+ entry into rat pulmonary arterial smooth muscle cells;American Journal of Physiology-Lung Cellular and Molecular Physiology;2017-04-01

2. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction;European Respiratory Journal;2015-10-22

3. Superoxide Generated at Mitochondrial Complex III Triggers Acute Responses to Hypoxia in the Pulmonary Circulation;American Journal of Respiratory and Critical Care Medicine;2013-02-15

4. Hypoxic Pulmonary Vasoconstriction;Physiological Reviews;2012-01

5. Lung Oxidative Damage by Hypoxia;Oxidative Medicine and Cellular Longevity;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3