Doppler evaluation of cardiac filling and ejection properties in humans during parabolic flight

Author:

Johns J. P.1,Vernalis M. N.1,Karemaker J. M.1,Latham R. D.1

Affiliation:

1. University of Nevada School of Medicine, Reno 89520.

Abstract

The cardiac filling and ejection properties of seven normal human subjects were examined during microgravity created on a National Aeronautics and Space Administration aircraft during parabolic flight. Doppler echocardiography was used to measure intracardiac velocities in sitting and supine subjects during three phases of flight: hypergravity (phase I), early microgravity (phase III), and late microgravity (phase IV). Heart rate declined 6% (P < 0.001) and right ventricular inflow velocities rose (46%, early; 26%, mean; P < 0.01) between phase I and phases III or IV in the sitting position only. Peak left ventricular outflow velocities rose 12% and inflow velocities rose (13%, early; 20%, mean) between phases I and IV while subjects were in the supine position (P < 0.05). A 14% rise in early velocities alone was seen between phases I and IV while subjects were in the sitting position (P < 0.05). In subjects entering microgravity while sitting, right heart chambers can accept additional venous return. When microgravity was entered while subjects were supine, however, venous augmentation was not observed. Left heart filling was more prominently enhanced when microgravity was entered while subjects were supine, suggesting a shift of fluid within the pulmonary vasculature.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3